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Abstract

We tested the applicability of three rigorous radiative transfer computational approaches, namely, the discrete ordinates

radiative transfer (DISORT) method, the adding–doubling approach, and an efficient computational technique based on

Ambartsumian’s nonlinear integral equation for computing the bidirectional reflectance of a semi-infinite layer. It was

found that each of these three models, in a combination with the truncation of the forward peak of the bulk scattering

phase functions of ice particles, can be used to simulate the bidirectional reflectance of a semi-infinite snow layer with

appropriate accuracy. Furthermore, we investigate the sensitivity of the bidirectional reflectance of a homogeneous and

optically infinite snow layer to ice crystal habit and effective particle size. It is shown that the bidirectional reflectance is not

sensitive to the particle effective size in the visible spectrum. The sensitivity of the bidirectional reflectance in the near-

infrared spectrum to the particle effective size increases with the increase of the incident wavelength. The sensitivity of the

bidirectional reflectance to the effective particle size and shape is attributed fundamentally to the sensitivity of the single-

scattering properties to particle size and shape. For a specific ice crystal habit, the truncated phase function used in the

radiative transfer computations is not sensitive to particle effective size. Thus, the single-scattering albedo is primarily

responsible for the sensitivity of the bidirectional reflectance to particle size, particularly, at a near-infrared wavelength.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Snow substantially reflects the solar radiation at visible wavelengths; additionally, snow also significantly
absorbs near-infrared radiation. Because of its pronounced effect on the radiation budget of the
earth–atmosphere system, snow plays a significant role in the terrestrial climate system and its evolution.
Satellite-based remote sensing of snow often requires the use of forward radiative transfer models to simulate
the bidirectional reflectances of snow sheets. In most previous modeling efforts, ‘‘equivalent spheres’’ were
commonly assumed, although realistic snow particles are almost exclusively nonspherical ice crystals with
e front matter r 2005 Elsevier Ltd. All rights reserved.
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various complicated morphologies such as aggregates and polycrystals. For example, Wiscombe and Warren
[1] simulated snow albedo as a function of wavelength using a two-stream radiative transfer code and
assuming the spherical equivalence for snow particles. Dozier [2] carried out extensive modeling simulations of
snow reflectance properties using the discrete ordinates radiative transfer (DISORT) code developed by
Stamnes et al. [3] in the two-stream mode. The former assumed ‘‘equivalent ice spheres’’ to implement a snow
masking algorithm involved in the analysis of the Landsat TM data. Grenfell [4] compared the observed snow
albedo with the theoretical results from the Lorenz–Mie theory. Painter and Dozier [5] simulated in situ
hemispherical–directional snow reflectance spectra using DISORT with 20 streams, who also assumed
‘‘equivalent ice spheres’’ in their analysis. Most recently, Kokhanovsky et al. [6,7] compared in situ
measurements of snow reflectance with calculations from Mishchenko et al.’s model [8] based on the
representation of snow grains as random-fractal particles. To properly simulate the bidirectional reflectance of
snow, a rigorous radiative transfer computational model in conjunction with reliable single-scattering
properties of snow particles is indispensable.

The intent of the present study is first to validate the applicability of three existing radiative transfer codes,
namely, DISORT [3], the adding–doubling model developed by de Hann et al. [9], and an efficient
computational model for a semi-infinite medium developed by Mishchenko et al. [8]. Because the bulk
scattering phase function of ice crystals normally has a forward peak that is associated with the diffraction of
the incident light for large size parameters, two truncation techniques, namely, the d-M method developed by
Wiscombe [10] and the d-fit method developed by Hu et al. [11], are used to truncate the forward peak in this
study. It was found that a combination of the fast Radiative Transfer Equation (RTE) method developed by
Mishchenko et al. [8] and the d-fit method [11] for phase function truncations is most appropriate for the
numerical calculation of snow reflectance. With this RTE model, the bidirectional reflectance is computed for
an optically infinite and homogeneous snow layer consisting of nonspherical ice crystals, by assuming five
habits (or shapes) for snow particles. The sensitivity of the bidirectional reflectances to different particle sizes
and shapes is investigated; particularly, the effects of two basic scattering parameters, the single-scattering
albedo and phase function, on the bidirectional reflectance of snow are also investigated.

This paper is organized as follows. The bidirectional reflectance of a snow sheet is defined in Section 2. In
Section 3, the theoretical basis of three rigorous radiative transfer models involved in the present study are
concisely recaptured, where the truncation of the forward peak of the phase function is also briefly described.
The numerical results and discussions are presented in Section 4. Finally, the conclusions of this study are
given in Section 5.
2. Bidirectional reflectance

Bidirectional reflectance is defined as the ratio of the reflected intensity along a direction toward the detector
to the incident intensity [12], which implies a comparison of the reflected intensity from a surface with that
from an absolutely white Lambertian surface. If the incident source of radiation is the sun, the bidirectional
reflectance can be defined as follows:

Rðm;f; m0;f0Þ ¼
Iðm;fÞ
m0F=p

¼
pIðm;fÞ
m0F

, (1)

where m ¼ cos y and m0 ¼ cos y0 in which y0 and y are the solar and viewing zenith angles, respectively; f0 and
f are the azimuthal angles of the sun and the detector, respectively; F is the direct solar irradiance at the top of
the atmosphere; and Iðm;fÞ is the specific intensity emerging from the top of the atmosphere toward the
detector. Note that the atmospheric absorption due to various gases is not accounted for in this study.

Bidirectional reflectance of a surface is intrinsically associated with the reflectance, absorptance and
roughness of the surface. Therefore, it provides valuable information on the optical characteristics of the
surface.

To compute the bidirectional reflectance of snow, in this study we assume a plane–parallel layer with an
optically semi-infinite medium composed of randomly oriented ice particles.
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3. Comparison of computational techniques

3.1. DISORT with d-fit truncation

3.1.1. DISORT

The DISORT model developed by Stamnes et al. [3] is based on the discrete ordinates method pioneered by
Chandrasekhar [13]. In this method, the specific intensity I is solved on the basis of the classical radiative
transfer equation for a plane–parallel atmosphere, given by

m
dIðt; m;fÞ

dt
¼ Iðt; m;fÞ �

~o
4p

Z 2p

0

df0
Z 1

�1

Iðt; m0;f0ÞPðm;j; m0;f0Þdm0

�
~o
4p

FPðm;f; m0;f0Þe�t=m0 þ ð1� ~oÞB½TðtÞ�, ð2Þ

where t is the optical depth, ~o is the single scattering albedo, F is the direct solar irradiance, and P is the phase
function. Any application of the classical radiative transfer equation is based on an implicit assumption that
scattering particles are located in each other’s far-field zones [14]. However, particulate surfaces in nature are
often composed of closely packed particles [15,16]. Preliminary analyses of the extent to which the classical
radiative transfer equation can be applied to such closely packed scattering media have been reported in the
literature [e.g., 17,18].

In the framework of the DISORT model, the specific intensity is expanded in a Fourier series as follows:

Iðt;m;fÞ ¼
XN

m¼0

Imðt;mÞ cosmðf0 � fÞ. (3)

By expanding the phase function in Eq. (2) and replacing the integral by Gaussian quadrature, each Im

coefficient can be solved for independently in the form of the summation of all the homogeneous solutions and
the particular solutions for the multiple-scattered radiation associated with the incident radiation and thermal
emission as follows:

Imðt; miÞ ¼
X

j

Lm
j j

m
j ðmiÞe

�km
j t þ ZmðmiÞe

�t=m0 ; i ¼ �n; . . . ; n. (4)

The DISORT is applicable to an atmosphere with various layers of arbitrary values of optical thickness,
single-scattering albedo, and phase function. Extensive efforts have been carried out to validate the
applicability and accuracy of this radiative transfer computational model. The technical details of the
DISORT are not recapitulated here since they have been reported in the literature [3].

3.1.2. DISORT with d-fit truncation

The scattering phase function in DISORT is specified in terms of its Legendre polynomial expansion
coefficients. For a phase function with a strong forward peak, thousands of Legendre expansion terms are
required. To use a practical number of expansion terms, which means less computer CPU time, the truncation
of the forward peak is required. The DISORT computational package contains the d-M truncation scheme
[10]. In this study, we use the d-fit truncation scheme [11] that is an extension and enhancement of the d-M
scheme. However, different from the d-M truncation, the d-fit technique provides the coefficients of Legendre
expansion by solving the following equations:

qe
qcl

¼ 0; l ¼ 0; 1; 2; . . . ;N, (5)

where e is the relative difference between actual phase function and truncated phase function. Cl, l ¼

0; 1; 2; . . . ;N are the coefficients of the Legendre polynomial expansion of the truncated phase function. It is
evident from Eq. (5) that the d-fit technique minimizes the errors associated with the truncation. In this study,
we also apply this truncation method to computations based on the adding–doubling method and the unique
method developed by Mishchenko et al. [8] for a semi-infinite medium.



ARTICLE IN PRESS
Y. Xie et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 100 (2006) 457–469460
3.2. Adding– doubling method

The adding–doubling method for solving the RTE was introduced by van de Hulst [19]. The
adding–doubling computational program used in this study is that developed by de Haan et al. [9] that
fully accounts for polarization which is a sine qua non for the transfer of radiation. In practice, the doubling
method may start with a thin layer with known single-scattering albedo and phase matrix, although Kattawar
and Plass [20] showed that this initialization scheme has some disadvantages and suggested a more
appropriate approach. Consider combining two parallel layers, one placed on top of the other. Let R1 and T1

be the reflection and transmission functions, respectively, for the first layer; whereas R2 and T2 are those for
the second layer. The bidirectional reflectance and transmission functions of the combined layer are given by
employing the adding equations (Eqs. (19)–(25) in Ref. [9]) using R1, T1, R2 and T2. The reflection and
transmission function of a layer with known single-scattering properties but arbitrary optical thickness can be
calculated by adding thin layers until the desired optical thickness is reached. The doubling method is a special
case of the adding method when the conjoined layers may have the same optical properties, i.e., optical
thickness, single-scattering albedo, and phase function.

To reduce the number of integrations in the adding scheme, a Fourier expansion is used in the
computational code developed by de Haan et al. [9]. For each Fourier component, a set of azimuth-
independent adding equations is derived. The supermatrices are employed to treat the combinations of
integrations and matrix multiplications as single matrix products.

Similar to DISORT, the adding–doubling method is also a rigorous method for radiation transfer
calculations. One of the advantages of this method is that it is quite effective for computing the reflection or
transmission function of a system composed of various vertically inhomogeneous layers.

3.3. Mishchenko et al.’s method

A radiative transfer computational package developed by Mishchenko et al. [8] is quite efficient for
computing the bidirectional reflectance of a semi-infinite homogeneous particulate medium. This technique is
based on the fact that the bidirectional reflectance can be expanded in a Fourier series as follows:

Rðm;m0;fÞ ¼ R0ðm; m0Þ þ 2
Xmmax

m¼1

Rmðm;m0Þ cosmf. (8)

The coefficients Rm in Eq. (8) can be determined directly by solving Ambarzumian’s nonlinear integral
equation [21,22].

Unlike the DISORT and adding–doubling computational programs, the computational technique
developed by Mishchenko et al. [8] is restricted to homogeneous semi-infinite scattering layers. However,
the advantage of the latter is that the computation of the internal radiation field is avoided, and the efficiency
in numerical computation is significant.

3.4. Comparison

Fig. 1 shows the comparison of the performance of the aforementioned three RT computational models.
Canonical simulations are carried out with an optical thickness of 2000, single-scattering albedo of 1, and the
Henyey–Greenstein (H–G) phase function, with a g of 0.75. The H–G function can be given in the form

PðcosYÞ ¼
1� g2

ð1þ g2 � 2g cosYÞ3=2
¼
XN

l¼0

ð2l þ 1ÞglPlðcosYÞ. (9)

Evidently, the Legendre expansion coefficients of the H–G function can be exactly obtained, provided the
asymmetry factor is given. For this analytical phase function, hundreds of Legendre expansion coefficients in
DISORT are needed to give convergent results. Fig. 1 shows the DISORT with an 8-term expansion of the
phase function based on the d-fit method essentially converges to the correct solution with several hundred
expansion terms. From the comparison of the results from DISORT with d-fit (dotted line in Fig. 1) and d-M



ARTICLE IN PRESS

×××××××××××××××××××
×

×
×

×
×

×

×

∆

×

×

∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆
∆

∆

∆
×∆

×∆

∆
∆

∆

∆

∆

×

∆

∆

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

80 90 100 110 120 130 140 150 160 170 180

B
id

ire
ct

io
na

l R
ef

le
ct

an
ce

scattering angle

DISORT with true coefficients

DISORT with delta-fit 8-term

DISORT with delta-M 8-term

× Mishchenko's with delta-fit 128-term

∆ Adding doubling with delta-fit128-
term

Fig. 1. Comparison of bidirectional reflectances from DISORT with true coefficients, d-fit and d-M truncation. Comparison of

bidirectional reflectances from DISROT, Mishchenko’s code and adding–doubling code.

Y. Xie et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 100 (2006) 457–469 461
(dashed line) truncation methods, it is evident that the d-fit truncation scheme is more accurate when the same
number of expansion terms are used. Thus, the d-fit truncation scheme is used in both Mishchenko et al.’s
method and the adding–doubling code in this study. To achieve high accuracy, 128 expansion terms are
considered in the d-fit truncation coefficients. Evidently, the aforementioned three radiative transfer models
agree well with each other. However, Mishchenko et al.’s method [8] is especially suitable for a case with a
semi-infinite optical thickness because of its computational efficiency. Thus, in this study a combination of the
fast Mishchenko et al.’s radiative transfer method and the d-fit expansion with 128 terms is utilized.

4. Computation and discussion

Five ice particle habits, including aggregates, bullet rosettes, hexagonal solids, hollow columns, and
hexagonal plates, are considered in this study. Ice particles are assumed to be randomly oriented. A snow layer
is assumed to be homogeneous and optically semi-infinite. The database of single-scattering properties for
each particle shape is developed by an improved geometric optics method [23], with 6 wavelengths ranging
from 0.4 to 2.2 mm and particle maximum dimensions from 2 to 10,000 mm. Detailed information on the
particle geometry and database of the single-scattering properties of ice crystals can be found in Refs. [23–25].
For a given size distribution of ice crystals, the effective size, De, is defined following Foot [26] as follows:

De ¼
3

2

R
V ðDÞnðDÞdDR
AðDÞnðDÞdD

, (10)

where n indicates the number concentration of ice crystals, D is the characteristic size (normally, the maximum
dimension for practical applications) of an ice crystal, and V and A are the volume and projected area of an ice
crystal. In this study, we assume a gamma distribution [27] for the population of ice crystals.

Figs. 2 and 3 show the bidirectional reflectance of snow as a function of particle effective size at the
wavelengths of 0.4, 0.6, 0.8, 1.2, 1.7 and 2.2 mm for two incident-view configurations. The incident solar zenith
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angles used in the computations are 301 and 601 for Figs. 2 and 3, respectively. The observing zenith angle
and relative azimuthal angle are 01 in both of the cases, that is, the observation of the bidirectional reflectance
is at the nadir. The aspect ratio of ice plates [24] results in a limitation on its effective size. Specifically, the
effective size increases little with the increase of the maximum dimension because the aspect ratio (i.e., the
ratio of the dimension of particle cross section to the particle length) increases and plates become relatively
thinner in terms of their aspect ratios. Therefore, the bidirectional reflectance of ice plates shown in Figs. 2 and
3 is available only for an effective size less than 400 mm. The numerical results for other particle shapes,
including aggregates, bullet rosettes, hexagonal solids and hollow columns, are given with effective sizes
up to 1000 mm.

Evidently, the variation of the bidirectional reflectance with particle effective size becomes more
pronounced with an increase in wavelength from 0.4 to 2.2 mm. The bidirectional reflectance in the
visible region (the upper two panels in Figs. 2 and 3) is close to 1 and slightly varies with the effective
size. However, in the near-infrared region (the middle two and lower two panels), especially when the
wavelength is longer than 1.2 mm, the values of bidirectional reflectance decrease with a large gradient,
as the effective size increases. The slope of the variation of the bidirectional reflectance for small particles
(effective sizes smaller than 400 mm) is negative. For larger particles, the slope of the curves tends to 0 with
increasing wavelength. Therefore, the smallest particles have the maximum value of bidirectional reflectance,
while the larger particles have minimum value. The numerical differences between the maximum and
minimum values in the same panel in Figs. 2 and 3 become larger with the increase of wavelength from 0.4 to
2.2 mm. Moreover, for the same particle size, the values of bidirectional reflectance decrease from the first
panel to the last one. For instance, the maximum values change from approximately 1.05 at l ¼ 0:4mm to
values around 0.5 at l ¼ 2:5 mm. The minimum values are from approximately 1.05 to 0.0. It is also obvious
that the bidirectional reflectance for any certain effective size decreases as the incident solar zenith angle
increases from 301 to 601. The decreasing rate decreases across the spectral region from the visible to the
near-infrared.

The sensitivity of the bidirectional reflectances to the five particle shapes is also illustrated in Figs. 2 and 3.
An interesting point is that with increasing wavelength, (i.e. moving from the first panel to the last) the
variation rate of the bidirectional reflectance for each of the five ice particle habits has a certain trend. The
overall trend is that bidirectional reflectance decreases with increasing wavelength for all the ice crystal shapes.
However, the bidirectional reflectance decreases more slowly for aggregates than for the other ice crystal
shapes. The reflectance associated with plates show significant variations. The trends for the other shapes can
be seen with a close examination of Figs. 2 and 3. The sensitivity of the bidirectional reflectances at the near-
infrared wavelengths to particle habit is evident.

It is well known that the sensitivity of bidirectional reflectance is related to optical depth, single-scattering
albedo, and phase function. The optical depth involved in this study is assumed to be infinite. Therefore, the
sensitivity of bidirectional reflectance to the particle size and shape are essentially attributed to the sensitivity
of the single-scattering albedo and phase function to the particle size and shape.

Fig. 4 shows the single-scattering albedo with the variation of effective size in the visible and near-infrared
regions. In the visible region (the upper two panels in Fig. 4), the single-scattering albedo is not sensitive to
effective size and is close to 1 for all the particle shapes. In the near-infrared region (the middle two and lower
two panels), the single-scattering albedo decreases as the wavelength increases. Compared with the case shown
in Fig. 4, the sensitivity of bidirectional reflectance to effective size shown in Figs. 2 and 3 is strongly related to
the single-scattering albedo.

For light scattering by large ice crystals with smooth planar faces such as the cases for hexagonal plates and
columns, the scattering phase function can be expressed in the form of

PðyÞ ¼ 2f ddðm� 1Þ þ ð1� f dÞ
~PðyÞ, (11)

where m ¼ cos y, d is the Dirac delta function, and the factor f d is associated with the delta-transmission of the
incident rays through two parallel faces of the scattering particle [28,29]. Note that the phase function P in
Eq. (11) is normalized if ~PðyÞ is normalized. As the sizes of ice crystals (on the order of several tens to hundreds
microns, and even up to thousands microns) are much larger than the visible and near-infrared wavelengths, a
strong forward peak corresponding to the diffraction of the incident light is associated with ~PðyÞ. In rigorous
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radiative transfer codes, the phase function is normally required to be expanded in terms of Legendre
polynomials. The strong forward peak of ~PðyÞ requires thousands of terms in the Legendre expansion of the
phase function if accurate results are expected, leading to substantial computational efforts. To economize
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numerical computations in radiative transfer simulations, a common practice is to truncate the forward peak.
Let the percentage of the scattered energy associated with the truncated peak be f. Then, the phase function
can be approximated as follows:

~PðyÞ � 2f dðm� 1Þ þ ð1� f Þ ~P
0
ðyÞ (12)

or,

PðyÞ � 2ðf d þ f � f df Þdðm� 1Þ þ ð1� f dÞð1� f Þ ~P
0
ðyÞ. (13)

~P
0
ðyÞ is the truncated phase function used in the radiative transfer computation. In this study, we use the d-fit

method developed by Hu et al. [11] to derive both ~P
0
ðyÞ and f from ~PðyÞ. With the truncation of the phase

function, other single-scattering parameters (the single-scattering albedo for this study) need to be adjusted on
the basis of the similarity principle [29,30].

Fig. 5 shows the truncated phase function ~P
0
ðyÞ for 5 ice crystal habits as a function of the scattering angle at

the wavelengths of 0.4, 0.8 and 2.2 mm. Three effective sizes, 50, 200 and 800 mm are used for aggregates, bullet
rosettes, hexagonal solids, and hollow columns whereas effective sizes of 50, 200 and 400 mm are used for
plates. Note that for aggregates, surface roughness is accounted for in the computation of the single-scattering
properties [25]. Evidently, phase functions are not highly sensitive to the effective size. As the size parameters
associated with light scattering by ice crystals are in the geometric optics regime, the side and backscattering
feature is essentially from the contribution of the externally reflected rays and the transmitted rays undergoing
various orders of internal reflection. At a nonabsorbing wavelength, the phase function in side and
backscattering directions are independent of particle size although in the forward direction the diffraction is
the dominant contribution and it is dependent on particle size, which is the case for the phase functions at a
wavelength of 0.4. The slight dependence of the phase function on the effective size is due to different aspect
ratios for particles when the size distribution of ice crystals is considered. For example, for columns, the aspect
ratio used in this study is [24]

a ¼
�8:479þ 1:002L� 0:00234L2; Lp200mm;

11:3L0:414; L4200mm;

(
(14)

where a is the semi-width of the cross section of a hexagonal column whereas L is length of the particle.
As a snow layer in the present simulation is assumed as a semi-infinite layer, the sensitivity of the

bidirectional reflection function is a function of the phase function and the single-scattering albedo. It is
evident from Fig. 5 that the phase functions for the three different effective sizes are quit similar at a
wavelength of 0.4 mm, a wavelength where the single-scattering albedo is close to 1. Therefore, for a visible
wavelength, the bidirectional reflectance of snow is not sensitive to the effective size, as is shown in Figs. 2 and
3. At a near-infrared wavelength, the phase function shows little sensitivity to the effective size, as is evident
from Fig. 5. However, the corresponding albedo decreases with effective size, as is shown in Fig. 4. Therefore,
the bidirectional reflectance is sensitive to particle size.

5. Conclusions

We investigated the sensitivity of the bidirectional reflectance of a semi-infinite snow layer to the effective
particle size and the shapes of ice crystals. Five ice crystal habits (aggregates, bullet rosettes, hexagonal solids,
hollow columns, and plates) are assumed for the geometries of ice crystals. The single-scattering properties of
these particles were computed from an improved geometric optics method. Furthermore, we investigated the
applicability of three radiative transfer codes for a semi-infinite medium. Based on the comparison of the
results from the three radiative transfer code, the code developed by Mishchenko et al. [8] in a combination
with the d-fit method for the truncation of the forward peak of the phase function was used in the present
simulation because of the computational efficiency of this code.

It is found that the bidirectional reflectance of snow depends slightly on the effective size at visible
wavelengths, whereas strong sensitivity of the bidirectional reflectance to particle size is noticed at the
near-infrared wavelengths. It is shown that the truncated phase functions used in the radiative transfer
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Fig. 5. The phase function for five particle habits with variables of the effective size and scattering angle. The effective sizes are given by

50, 200 and 400mm for plate, and 50, 200 and 800mm for the other four particles. The wavelengths are 0.4, 0.8 and 2.2mm, respectively.

The scattering angles vary from 01 to 1801.
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computations for different effective sizes are similar for a specific ice crystal habit. Therefore, the sensitivity of
the bidirectional reflectance to particle size at the near-infrared wavelengths is attributed essentially to the
dependence of the single-scattering albedo on the particle size. The truncated phase functions for the five ice
crystal habits are different. As a result, the bidirectional reflectance is sensitive to particle habit. At a near-
infrared wavelength, the single-scattering albedo is also sensitive to particle habit. Therefore, the sensitivity of
the bidirectional reflectance for particle habits at an infrared wavelength is attributed to the sensitivity of both
the phase function and single-scattering albedo to ice crystal habits.
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